
ACTS Workshop, 6 August 2003

http://www.tops-scidac.org

David E. Keyes, Columbia University

Advanced Solver Algorithms and
Physics-based Preconditioners

ACTS Workshop, 6 August 2003

Recall Newton methods
� Given and iterate

we wish to pick such that

where
� Neglecting higher-order terms, we get

where is the Jacobian matrix,
generally large, sparse, and ill-conditioned for PDEs

� In practice, require
� In practice, set where is

selected to minimize

nnFuF ℜ→ℜ= :,0)(0u
1+ku

0)()()('1 =+≈+ kkkk uuFuFuF δ
,...2,1,0,1 =−= + kuuu kkkδ

)()]([1 kkk uFuJu −−=δ
)(' kuFJ =

εδ <+ ||)()(|| kkk uuJuF
kkk uuu λδ+=+1 λ

||)(|| kk uuF λδ+

ACTS Workshop, 6 August 2003

Nonlinear Robustness
� Problem:

� attempts to handle nonlinear problems with nonlinear implicit
methods often encounter stagnation failure of Newton away
from the neighborhood of the desired root

� Algebraic solutions:
� linesearch and trust-region methods
� “forcing terms”

� Physics-based solutions:
� mesh sequencing
� continuation (homotopy) methods for directly addressing this

through the physics, e.g., pseudo-transient continuation
� transform system to be solved so that neglected curvature

terms of multivariate Taylor expansion truncated for
Newton’s method are smaller (nonlinear Schwarz)

ACTS Workshop, 6 August 2003

Standard robustness features
� PETSc contains in its nonlinear solver library some

standard algebraic robustness devices for nonlinear
rootfinding from Dennis & Schnabel, 1983

� Line search
� try to ensure that F(u) is strictly monotonically decreasing
� parameterize reduction of |F(u + λδu)| along Newton step δu
� solve scalar minimization problem for λ

� Trust region
� define a region about the current iterate within which we trust a

model of the residual
� approximately minimize the model of the residual within the region

(again with low-dimensional parameterization of convex combination
of descent direction and Newton direction)

� shrink or expand trust region according to history

ACTS Workshop, 6 August 2003

Standard robustness features
� PETSc contains in its nonlinear solver library

standard algebraic robustness devices for nonlinear
rootfinding from Eisenstat & Walker (1996)
� EW’96 contains three heuristics for the accuracy with which a

Newton step should be solved
� relies intrinsically on iterative solution of the Newton

correction equation
� tolerance for linear residual (“forcing factor”) computed based

on norms easily obtained as by-products of the rootfinding
computation – little additional expense

� tolerance tightens dynamically as residual norm decreases
during the computation

� “oversolving” not only wastes execution time, but may be less
robust, since early Newton directions are not reliable

ACTS Workshop, 6 August 2003

Mesh sequencing
• Technique for robustifying nonlinear rootfinding for

problems based on continuum approximation
• Relies on several levels of refinement from coarse to fine
• Theory exists showing (for nonlinear elliptic problems)

that, asymptotically, the root on a coarser mesh,
appropriately interpolated onto a finer mesh, lies in the
domain of convergence of Newton’s method on the finer
grid

0

2

4

6

8

10

12

14

16

32x16 64x32 128x64

without MS
with MS

Execution times for 8-equation 2D
BVP steady-state coupled edge
plasma/Navier-Stokes problem,
from Knoll & McHugh (SIAM J.
Sci. Comput., 1999)

ACTS Workshop, 6 August 2003

Time-implicit Newton-Krylov-Schwarz
For accommodation of unsteady problems, and nonlinear robustness in

steady ones, NKS iteration is wrapped in time-stepping:
for (l = 0; l < n_time; l++) {

select time step
for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) {

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients
check linear convergence

} // End of linear solver
perform DAXPY update
check nonlinear convergence

} // End of nonlinear loop
} // End of time-step loop

NKS
loop

Pseudo-
time
loop

ACTS Workshop, 6 August 2003

Pseudo-transient continuation (ΨΨΨΨtc)
� Solve F(u)=0 through a series of problems

derived from method of lines model

� is advanced from to ∞∞∞∞ as so
that approaches the root

� With initial iterate for as , the first
Newton correction for (*) is

� Note that ||F(u)|| can climb hills during ΨΨΨΨtc
� Can subcycle inside physical timestepping

�τ 10 <<τ ∞→�
��

�

�

� ,2,1,0)()(
1

==+−=
−

uFuuuf
τ

�u
�u 1−�u

(*)

)()](1[111'1 −−−− +−= ��

�

�� uFuFIuu
τ

ACTS Workshop, 6 August 2003

Algorithmic tuning - continuation parameters
� “Switched Evolution-Relaxation” (SER) heuristic

� Analysis in SIAM papers by Kelley & Keyes (1999 for
parabolized, 2002 for mixed elliptic/parabolized)

� Parameters of interest:
� initial CFL number
� exponent in the Power Law

� = 1 normally
� > 1 for first-order discretization (1.5)
� < 1 at outset of second-order discretization (0.75)

� switch-over ratio between first-order and second-order

p

u lf

uf
N CFLN l

CFL 















−
=

)1(

)0(
0

ACTS Workshop, 6 August 2003

Nonlinear Schwarz preconditioning
� Nonlinear Schwarz has Newton both inside and

outside and is fundamentally Jacobian-free
� It replaces with a new nonlinear system

possessing the same root,
� Define a correction to the partition (e.g.,

subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the components
of the partition

� Then sum the corrections:

0)(=uF
0)(=Φ u
thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

ACTS Workshop, 6 August 2003

Nonlinear Schwarz – picture

1
1

1
1

0 0

u

F(u)

Ri

RiuRiF

ACTS Workshop, 6 August 2003

Nonlinear Schwarz – picture

1
1

1
1

0 0

1
1

1
1

0 0

u

F(u)

Ri

Rj

Riu

RjF

RiF

Rju

ACTS Workshop, 6 August 2003

Nonlinear Schwarz – picture

1
1

1
1

0 0

1
1

1
1

0 0

u

F(u)

Fi’(ui)

Ri

Rj

Riu

RjF

RiF

Rju

δiu+δju

ACTS Workshop, 6 August 2003

Nonlinear Schwarz, cont.
� It is simple to prove that if the Jacobian of F(u) is

nonsingular in a neighborhood of the desired root
then and have the same unique
root

� To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :
� The residual
� The Jacobian-vector product

� Remarkably, (Cai-Keyes, 2000) it can be shown that

where and
� All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

ACTS Workshop, 6 August 2003

Nonlinear Schwarz, cont.
Discussion:
� After the linear version of additive Schwarz was

invented, it was realized that it was algebraically in
the same class of methods as additive multigrid,
though linear MG is usually done multiplicatively

� After nonlinear Schwarz was invented, it was
realized that it was algebraically in the same class of
methods as nonlinear multigrid (full approximation
scheme MG), though nonlinear multigrid is usually
done multiplicatively

ACTS Workshop, 6 August 2003

Driven cavity in velocity-vorticity coords

02 =
∂
∂−∇−

y
u ω

02 =
∂
∂+∇−

x
v ω

0Gr2 =
∂
∂−

∂
∂+

∂
∂+∇−

x
T

y
v

x
u ωωω

0)(Pr2 =
∂
∂+

∂
∂+∇−

y
Tv

x
TuT

x-velocity

y-velocity

vorticity

internal energy

hotcold

ACTS Workshop, 6 August 2003

Experimental example of nonlinear Schwarz

Newton’s method Additive Schwarz Preconditioned Inexact Newton
(ASPIN)

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

ACTS Workshop, 6 August 2003

Jacobian-free Newton-Krylov
� In the Jacobian-Free Newton-Krylov (JFNK) method, a

Krylov method solves the linear Newton correction
equation, requiring Jacobian-vector products

� These are approximated by the Fréchet derivatives

(where is chosen with a fine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

� One builds the Krylov space on a true F’(u) (to within
numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε

ACTS Workshop, 6 August 2003

Recall idea of preconditioning
� Krylov iteration is expensive in memory and in

function evaluations, so k must be kept small in
practice, through preconditioning the Jacobian with an
approximate inverse, so that the product matrix has
low condition number in

� Given the ability to apply the action of to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11)(−− =
1−B

ACTS Workshop, 6 August 2003

Philosophy of Jacobian-free NK
� To evaluate the linear residual, we use the true F’(u) , giving

a true Newton step and asymptotic quadratic Newton
convergence

� To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:
� Jacobian of lower-order discretization
� Jacobian with “lagged” values for expensive terms
� Jacobian stored in lower precision
� Jacobian blocks decomposed for parallelism
� Jacobian of related discretization
� operator-split Jacobians
� physics-based preconditioning

ACTS Workshop, 6 August 2003

Using Jacobian of lower order discretization
� Orszag popularized the use of linear finite element

discretizations as preconditioners for high-order spectral
element discretizations in the 1970s; both approach the
same continuous operator

� It is common in CFD to employ first-order upwinded
convective operators as approximate inversions for
higher-order operators:
� better factorization stability
� smaller matrix bandwidth and complexity

� With Jacobian-free NK, we can have the best of both
worlds – a stable factorization/cheap solve and a true
Jacobian step

ACTS Workshop, 6 August 2003

Using Jacobian with lagged terms
� Newton-chord methods (e.g., papers by Smooke et al.) “freeze”

the Jacobian matrices:
� saves Jacobian evaluation and factorization, which can be up to 90%

of the running time of the code in some apps
� however, nonlinear convergence degrades to linear rate

� In Jacobian-free NK, we can “freeze” some or all of the terms in
the Jacobian preconditioner, while always accessing the action of
the true Jacobian for the Krylov matrix-vector multiply:
� still saves Jacobian work
� maintains asymptotically quadratic rate for nonlinear convergence

� See (Knoll-Keyes ’03) for example with coupled edge plasma and
Navier-Stokes, showing five-fold improvement over full Newton
with constantly refreshed Jacobian on LHS, versus JFNK with
preconditioner refreshed once each ten timesteps

ACTS Workshop, 6 August 2003

Using Jacobian with lower precision elements
� Memory bandwidth is the critical architectural

parameter for sparse linear algebra computations
� Storing the preconditioner elements in single precision

effectively doubles memory bandwidth (and potentially
halves runtime) for this critical phase

� We still form the Jacobian-vector product with full
precision and “zero-pad” the preconditioner elements
back to full length in the arithmetic unit, so the
numerical quality of the Krylov subspace does not
degrade

ACTS Workshop, 6 August 2003

Memory BW bottleneck revealed
via precision reduction

106s122s16s31s120
181s205s34s60s64
331s373s67s117s32
657s746s136s223s16

SingleDoubleSingleDouble
OverallLinear Solve

Computational Phase
Number of
Processors

Execution times for unstructured NKS Euler Simulation on Origin 2000:
double precision matrices versus single precision preconditioner

Note that times are nearly halved, along with precision, for the BW-limited linear solve
phase, indicating that the BW can be at least doubled before hitting the next bottleneck!

ACTS Workshop, 6 August 2003

Using Jacobian of related discretization
� To precondition a variable coefficient operator, such

as ∇·(α∇ •) , use , based on a constant
coefficient average

� Brown & Saad (1980) showed that, because of the
availability of fast solvers, it may even be acceptable
to use to precondition something like

2∇α

y
v

x
u

∂
•∂+

∂
•∂+•∇−)()()(2

2∇−

ACTS Workshop, 6 August 2003

Operator-split preconditioning
� Subcomponents of a PDE operator often have special

structure that can be exploited if they are treated
separately

� Algebraically, this is just a generalization of Schwarz, by
term instead of by subdomain

� Suppose and a preconditioner is to be
constructed, where and are each
“easy” to invert

� Form a preconditioned vector from as follows:

� Equivalent to replacing with
� First-order splitting error, yet often used as a solver!

RSIJ ++= −1τ
SI τ+ RI τ+

u

J SRRSI ττ +++−1

uSIRI 111)()(−−− ++ ττ

ACTS Workshop, 6 August 2003

Operator-split preconditioning, cont.
� Suppose S is convection-diffusion and R is reaction,

among a collection of fields stored as gridfunctions
� On a small regular 2D grid with a five-point

stencil:

� R is trivially invertible in block diagonal form
� S is invertible with one multilevel solve per field

J = S + R

ACTS Workshop, 6 August 2003

� Preconditioners assembled from just the “strong” elements
of the Jacobian, alternating the source term and the
diffusion term operators, are competitive in convergence
rates with block-ILU on the Jacobian
� particularly, since the decoupled scalar diffusion systems are

amenable to simple multigrid treatment – not as trivial for the coupled
system

� The decoupled preconditioners store many fewer elements
and significantly reduce memory bandwidth requirements
and are expected to be much faster per iteration when
carefully implemented

� See “alternative block factorization” by Bank et al.;
incorporated into SciDAC TSI solver by D’Azevedo

Operator-split preconditioning, cont.

ACTS Workshop, 6 August 2003

Physics-based preconditioning
� In Newton iteration, one seeks to obtain a correction

(“delta”) to solution, by inverting the Jacobian
matrix on (the negative of) the nonlinear residual:

� A typical operator-split code also derives a “delta” to
the solution, by some implicitly defined means,
through a series of implicit and explicit substeps

� This implicitly defined mapping from residual to
“delta” is a natural preconditioner

� Software must accommodate this!

)()]([1 kkk uFuJu −−=δ

kk uuF δ�)(

ACTS Workshop, 6 August 2003

Physics-based Preconditioning
� We consider a standard “dynamical

core,” the shallow-water wave
splitting algorithm, as a solver

� Leaves a first-order in time splitting
error

� In the Jacobian-free Newton-Krylov
framework, this solver, which maps a
residual into a correction, can be
regarded as a preconditioner

� The true Jacobian is never formed yet
the time-implicit nonlinear residual at
each time step can be made as small as
needed for nonlinear consistency in
long time integrations

ACTS Workshop, 6 August 2003

Example: shallow water equations
� Continuity (*)

� Momentum (**)

� These equations admit a fast gravity wave, as can be
seen by cross differentiating, e.g., (*) by t and (**) by
x, and subtracting:

0)(=
∂
∂+

∂
∂

x
u

t
φφ

0)()(2

=
∂
∂+

∂
∂+

∂
∂

x
g

x
u

t
u φφφφ

termsother
x

g
t

=
∂
∂−

∂
∂

2

2

2

2 φφφ

×
∂
∂
t

×
∂
∂
x

ACTS Workshop, 6 August 2003

1D shallow water equations, cont.

� Wave equation for geopotential:

� Gravity wave speed φg

� Typically , but stability restrictions
would require timesteps based on the Courant-
Friedrichs-Levy (CFL) criterion for the fastest wave,
for an explicit method

� One can solve fully implicitly, or one can filter out the
gravity wave by solving semi-implicitly

ug >>φ

termsother
x

g
t

=
∂
∂−

∂
∂

2

2

2

2 φφφ

ACTS Workshop, 6 August 2003

1D shallow water equations, cont.
� Continuity (*)

� Momentum (**)

0)(11

=
∂

∂+− ++

x
u nnn φ

τ
φφ

0)()()(121

=
∂
∂+

∂
∂+− ++

x
g

x
uuu n

n
nnn φφφ

τ
φφ

� Solving (**) for and substituting into (*),

where

1)(+nu φ

x
S

xx
g

n
n

n
nn

∂
∂+=

∂
∂

∂
∂−

+
+ φφφτφ)(

1
21

x
uuS

n
nn

∂
∂−=)()(

2φτφ

ACTS Workshop, 6 August 2003

1D shallow water equations, cont.
� After the parabolic equation is spatially discretized and

solved for , then can be found from
n

n
nn S

x
gu +

∂
∂−=

+
+

1
1)(φφτφ

� One scalar parabolic solve and one scalar explicit update
replace an implicit hyperbolic system

� This semi-implicit operator splitting is foundational to
multiple scales problems in geophysical modeling

� Similar tricks are employed in aerodynamics (sound
waves), MHD (multiple Alfvén waves), reacting flows
(fast kinetics), etc.

� Temporal truncation error remains due to the lagging
of the advection in (**)

1+nφ 1)(+nu φ

To be dealt with shortly

ACTS Workshop, 6 August 2003

1D Shallow water preconditioning
� Define continuity residual for each timestep:

� Define momentum residual for each timestep:

φφδ
τ
δφ _)]([R

x
u −=
∂

∂+

φδφφ
τ
φδ uR

x
gu n _][)(−=

∂
∂+

� Continuity delta-form (*):

� Momentum delta form (**):

x
uR

nnn

∂
∂+−≡

++ 11)(_ φ
τ
φφφ

x
g

x
uuuuR

n
n

nnn

∂
∂+

∂
∂+−≡

++ 121)()()(_ φφφ
τ

φφφ

ACTS Workshop, 6 August 2003

1D Shallow water preconditioning, cont.
� Solving (**) for and substituting into (*),

� After this parabolic equation is solved for δφ , we have

� This completes the application of the preconditioner to one
Newton-Krylov iteration at one timestep

� Of course, the parabolic solve need not be done exactly;
one sweep of multigrid can be used

� See paper by Mousseau et al. (2002) for impressive results
for longtime weather integration

)(φδ u

)_(_)][(22 φτφφδφτδφ uR
x

R
xx

g n

∂
∂+−=

∂
∂

∂
∂−

φδφφτφδ uR
x

gu n _][)(−
∂
∂−=

ACTS Workshop, 6 August 2003

Physics-based preconditioning update

� So far, physics-based preconditioning has been
applied to several codes at Los Alamos, in an effort
led by D. Knoll

� Summarized in new J. Comp. Phys. paper by Knoll &
Keyes (2003)

� PETSc’s “shell preconditioner” is ideal for inserting
physics-based preconditioners, and PETSc’s solvers
underneath are ideal building blocks

ACTS Workshop, 6 August 2003

SciDAC philosophy on PDEs
� Solution of a system of PDEs is rarely a goal in itself

� PDEs are solved to derive various outputs from specified inputs
� actual goal is characterization of a response surface or a design

or control strategy
� together with analysis, sensitivities and stability are often

desired

⇒Tools for PDE solution should also support these
related desires

ACTS Workshop, 6 August 2003

PDE-constrained optimization

� PDE-constrained optimization: a relatively new horizon
� … for large-scale PDE solution

� next step after reducing to practice parallel implicit solvers for coupled
systems of (steady-state) PDEs

� now “routine” to solve systems of PDEs with millions of DOFs on thousands
of processors

� … for constrained optimization
� complexity of a single projection to the constraint manifold for million-DOF

PDE is too expensive for an inner loop of traditional RSQP method
� must devise new “all-at-once” algorithms that seek “exact” feasibility only

at optimality

� Our approach starts from the iterative PDE solver side

ACTS Workshop, 6 August 2003

Optimizers
� Many simulations are properly posed as

optimization problems, but this may not
always be recognized

� Unconstrained or bound-constrained
applications use TAO

� PDE-constrained problems use Veltisto
� Both are built on PETSc solvers (and

Hypre preconditioners)
� TAO makes heavy use of AD, freeing

user from much coding
� Veltisto, based on RSQP, switches as

soon as possible to an “all-at-once”
method and minimizes the number of
PDE solution “work units”

0,0),(..),(min ≥= uuxFtsux
u
φ

Optimizer

Linear
solver

Eigensolver

Time
integrator

Nonlinear
solver

Indicates
dependence

Sens. Analyzer

ACTS Workshop, 6 August 2003

Recent optimization progress (recap)

� Unconstrained or bound-
constrained optimization

� TAO-PETSc used in quantum
chemistry energy minimization

� PDE-constrained optimization
� Veltisto-PETSc used in flow control

application, to straighten out wingtip
vortex by wing surface blowing and
sunction; performs full optimization
in the time of just five N-S solves

� “Best technical paper” at SC2002
went to our SciDAC colleagues at
CMU:

� Inverse wave propagation employed
to infer hidden geometry

4000 controls

128 procs

2 million controls

256 procs

ACTS Workshop, 6 August 2003

Constrained optimization w/Lagrangian
� Consider Newton’s method for solving the nonlinear

rootfinding problem derived from the necessary
conditions for constrained optimization

� Constraint
� Objective
� Lagrangian
� Form the gradient of the Lagrangian with respect to

each of x, u, and λ:

NMN cuxuxc ℜ∈ℜ∈ℜ∈= ;;;0),(
ℜ∈fuxfu ;),(min

NT uxcuxf ℜ∈+ λλ ;),(),(

0),(),(=+ uxcuxf xx
Tλ

0),(=uxc
0),(),(=+ uxcuxf uu

Tλ

ACTS Workshop, 6 August 2003

Newton on first-order conditions
� Equality constrained optimization leads to the KKT

system for states x , designs u , and multipliers λ
















−=

































c
g
g

u
x

JJ
JWW
JWW

u

x

ux

T
uuuux

T
x

T
uxxx

δλ
δ
δ

0

� Then

� Newton Reduced SQP solves the Schur complement
system H δu = g , where H is the reduced Hessian

cJWWJJgJJgg xuxxx
T

x
T
ux

T
x

T
uu

1)(−−− −−+−=
uxuxxx

T
x

T
u

T
ux

T
x

T
uuu JJWWJJWJJWH 1)(−−− −−−=

uJcxJ ux δδ −−=
uWxWgJ T

uxxxx
T
x δδδλ −−−=

ACTS Workshop, 6 August 2003

RSQP when constraints are PDEs
� Problems

� is the Jacobian of a PDE ⇒⇒⇒⇒ huge!
� involve Hessians of objective and constraints ⇒⇒⇒⇒ second

derivatives and huge

� H is unreasonable to form, store, or invert

xJ
αβW

� Proposed solution: Schwarz inside Schur!
� form approximate inverse action of state Jacobian and its

transpose in parallel by Schwarz/multilevel methods
� form forward action of Hessians by automatic differentiation;

exact action needed only on vectors (JFNK)
� do not eliminate exactly; use Schur preconditioning on full

system

ACTS Workshop, 6 August 2003

Schur preconditioning from DD theory
� Given a partition

� Condense:

� Let M be a good preconditioner for S
� Then is a preconditioner for A

� Moreover, solves with may be approximate if all
degrees of freedom are retained (e.g., a single V-cycle)

� Algebraic analogy from constrained optimization: “i”
is state-like, “ΓΓΓΓ” is decision-like









=
















ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii
















 Γ
−

Γ M
AAI

IA
A iii

i

ii

0
0 1

gSu =Γ Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

iiA

i Γ

ACTS Workshop, 6 August 2003

PDE-constrained Optimization

c/o G. Biros and O. Ghattas

Lagrange-Newton-Krylov-Schur implemented in Veltisto/PETSc

wing tip vortices, no control (l); optimal control (r)wing tip vortices, no control (l); optimal control (r)

optimal boundary controls shown as velocity vectorsoptimal boundary controls shown as velocity vectors

� Optimal control of laminar viscous flow
� optimization variables are surface

suction/injection
� objective is minimum drag
� 700,000 states; 4,000 controls
� 128 Cray T3E processors
� ~5 hrs for optimal solution (~1 hr for analysis)

www.cs.nyu.edu/~biros/veltisto/

ACTS Workshop, 6 August 2003

PETSc codeUser code

Nonlinear PDE solution w/PETSc

AD-generated code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Solve
F(u) = 0

Application Driver

• Automatic Differentiation (AD): a technology for automatically augmenting
computer programs, including arbitrarily complex simulations, with statements for
the computation of derivatives, also known as sensitivities.
• AD Collaborators: P. Hovland and B. Norris (http://www.mcs.anl.gov/autodiff)

(c/o Lois Curfman McInnes, ANL)

ACTS Workshop, 6 August 2003

Application
Initialization

Post-
Processing

PETSc Solve
F(u) = 0

Zoom on user routine structure

PETSc codeUser code AD-generated code

Nonlinear Solvers (SNES)

Main Routine

Parallel Jacobian
assembly

Global-to-local
scatter of ghost values

Seed matrix
initialization

Local Jacobian
computation

Global-to-local
scatter of ghost values

Parallel function
assembly

Local Function
computation

(c/o Lois Curfman McInnes, ANL)

ACTS Workshop, 6 August 2003

Using AD with PETSc:
Creation of AD Jacobian from function

Global-to-local
scatter of ghost values

Parallel function
assembly

Local Function
computation

Parallel Jacobian
assembly

Global-to-local
scatter of ghost values

Local Jacobian
computation

Local Function
computation

ADIFOR or ADIC

Local Jacobian
computation

Script file

Seed matrix
initialization

• Fully automated for structured meshes
• Currently manual setup for unstructured
meshes; can be automated

Current status:

(c/o Lois Curfman McInnes, ANL)

ACTS Workshop, 6 August 2003

Parameter identification model

� Nonlinear diffusion PDE BVP:
� Parameters to be identified: α(x), β
� Dirichlet conditions in x, homogeneous Neumann

in all other dimensions (so solution has 1D
character but arbitrarily large parallel test cases
can be set up)

� Objective: where is
synthetic data specified from a priori solution
with given α(x) piecewise constant, β=2.5 (Brisk-
Spitzer approximation for radiation diffusion)

2||)()(|| xTxT −=Φ)(xT

0))((=∇•∇ TTx βα

ACTS Workshop, 6 August 2003

Implementation
� PETSc’s “shell preconditioner” functionality used to

build the block factored KKT preconditioner recursively
� Solution method: LNKS with Schwarz preconditioning

of the PDE Jacobian blocks, ILU on Schwarz
subdomains

� MPI-based parallelization
� ADIC generates Jacobian blocks from user functions
� Illustrative results (next slide) fix αααα(x) and identify

exponent ββββ only, while uniform mesh density is refined in
2D; have also identified αααα(x) throughout full domain

� Newton-like, mesh-independent convergence for overall
residual

ACTS Workshop, 6 August 2003

Illustrative results

2-norm of residual of full system
F(T(x),ββββ,λλλλ(x)) vs. iteration

|ββββ -ββββ*| vs. iteration

[solid: 25×25 2Dmesh, dash: 50×50, dot-dash: 100×100, dot-dot-dash:200×200]

ACTS Workshop, 6 August 2003

Closing
� TOPS is providing interoperable combinations of

the tools in the ACTS Toolkit described so far in
the program (PETSc, TAO, SuperLU,
Hypre) and others

� However, TOPS does not pretend that the best
“solutions” will be prepackaged and available
across simple abstract interfaces

� Rather, TOPS hopes to provide multilayered
access to solver building blocks that can be
assembled by users to build more sophisticated
solvers

ACTS Workshop, 6 August 2003

“Knowing what is big and what is small is more important than
being able to solve partial differential equations.” – S. Ulam

http://www.tops-scidac.org

